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Abstract. The canonical functional action in the path integral in phase space is discretized by
linking each pair of consecutive vertebral points—qk andpk+1 orpk andqk+1—through the invariant
complete solution of the Hamilton–Jacobi equation associated with the classical path defined by
these extremes. When the measure is chosen to reflect the geometrical character of the propagator
(it must behave as a density of weight1

2 in both of its arguments), the resulting infinitesimal
propagator is cast in the form of an expansion in a basis of short-time solutions of the wave
equation, associated with the eigenfunctions of the initial momenta canonically conjugated to a set
of normal coordinates. The operator ordering induced by this prescription is a combination of a
symmetrization rule coming from the phase, and a derivative term coming from the measure.

1. Introduction

By taking Dirac’s ideas [1] into account, R P Feynman explained how non-relativistic quantum
mechanics can be formulated from principles that make contact with the variational principles
of Lagrangian mechanics [2]. Feynman showed that quantum mechanics can be based on the
statement that thepropagator, i.e. the probability amplitude of finding the system in the state
q′′ at t ′′, given that it was found inq′ at t ′, can be obtained by means of the path integration:

K(q′′t ′′|q′t ′) =
∫
Dq(t) exp

[
i

h̄
S[q(t)]

]
(1)

whereS[q(t)] is the functional action of the system. Since the path integral is a functional
integration, one gives a meaning to equation (1) by replacing each path by askeletonizedversion
where the pathq(t) is represented by a set of interpolating points(qk, tk), k = 0, 1, . . . , N ,
q0 = q′, qN = q′′, qk = q(tk). Then the functional action is replaced by a functionS({qk, tk}),
and the functional integration reduces to integrate the variablesqk, k = 1, . . . , N−1‡. Finally,
the limit1tk ≡ tk+1− tk → 0 (i.e.,N →∞) is performed§.

The functionS({qk, tk}) is chosen to be [2,4]:

S({qk, tk}) =
N−1∑
k=0

S(qk+1tk+1|qktk) (2)

† E-mail address:ferraro@iafe.uba.ar
‡ The convergence is assured by endowing the time with an imaginary part of proper sign.
§ The rigorous mathematical meaning of this limit can be consulted in [3] and references therein.
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whereS(qk+1tk+1|qktk) is the Hamilton principal function, i.e.the complete solution (in each
argument) of the Hamilton–Jacobi equation that is equal to the functional action evaluated on
the classical path joining its arguments. Thus, the skeletonization (2) replaces each pathq(t)

by a succession of pieces defined by the system itself, which join the interpolating points. The
skeletonized action (2) retains the essential classical property of the functional action; namely
it is stationary on the points interpolating the entire classical path between(q′, t ′) and(q′′, t ′′).
In fact,S({qk, tk}) is stationary when

∂

∂qk
S(qk+1tk+1|qktk) +

∂

∂qk
S(qktk|qk−1tk−1) = 0 ∀k (3)

meaning that theqk are such that the final momentum of the classical piece between(qk−1, tk−1)

and (qk, tk), matches the initial momentum of the classical piece between(qk, tk) and
(qk+1, tk+1). This continuity guarantees that the points{(qk, tk)} are interpolating points of
the entire classical path between(q′, t ′) and(q′′, t ′′).

Although a proper skeletonization for the path integral exists in the configuration space,
the measure in equation (1) remains ambiguous. For instance, the finite propagator for a
quadratic Lagrangian is known to be [5,6]

K(q′′t ′′|q′t ′) =
[
det

(
i

2πh̄

∂2S(q′′t ′′|q′t ′)
∂q′′∂q′

)]1/2

exp

[
i

h̄
S(q′′t ′′|q′t ′)

]
. (4)

This expression is also valid for the infinitesimal propagator of any classical system [7]. The
prefactor in equation (4) is the Van Vleck determinant [8], which takes part in the measure,
and is nontrivial even for the short-time pieces of the skeletonization.

A different kind of example is the (finite) Newton–Wigner propagator for the relativistic
particle in flat space–time [9]:

K(q ′′t ′′|q ′t ′) = − (t ′′ − t ′)m2c3

πh̄S(q ′′t ′′|q ′t ′)K1

(
i

h̄
S(q ′′t ′′|q ′t ′)

)
(5)

(in 1 + 1dimensions), whereS(q ′′t ′′|q ′t ′) = −mc(c2(t ′′ − t ′)2 − (q ′′ − q ′)2)1/2, andK1 is a
modified Bessel function. In this case, the exponential of the Hamilton principal function does
not cleanly appear in the propagator, and neither does it in the short time version (actually the
propagator (5) gets the form (4), not whent ′′ → t ′ but in the classical limit when the Compton
wavelengthh̄/(mc) goes to zero). Results of this sort could indicate a failure of (1) to give the
quantum propagator for an arbitrary system [10]. Anyway, it lays bare our complete ignorance
of the measure in the representation (1).

It was thought that a path integration in phase space could remedy this problem because
there is a privileged measure in phase space: the Liouville measure dq dp/(2πh̄)n (n is the
dimension of the configuration space), which is invariant under canonical transformations.
In this case, one should find an appropriate recipe for the skeletonization of the canonical
functional action

S[q(t),p(t)] =
∫ t ′′

t ′
(p(t) · q̇(t)−H(q,p)) dt (6)

i.e., one should replace the functional in equation (6) by a functionS({qk,pk, tk}) of
interpolating points for the pathq(t),p(t). The functionS({qk,pk, tk}) should be dictated
by the system itself.

In [11] several recipes were essayed for a Newtonian system moving on a Riemannian
manifold. Since the data(qk,pk; qk+1,pk+1) overdeterminate the classical path betweentk
andtk+1, the basic idea was to use the classical piece in the configuration space (just as in the
previous case), together with the parallel transport ofp(tk) = pk along that classical piece. Of
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course, the parallel transport ofpk does not end inpk+1 (unless the points interpolate the entire
classical path betweent ′ and t ′′). So the skeletonized path proves to be discontinuous inp

(an unavoidable fact in phase space). The different recipes for the skeletonization came from
the possibility of replacing the metric by a bitensor with the right coincidence limit. After
the momenta were integrated on, an infinitesimal propagator similar to the one of equation (4)
was obtained. However, the different skeletonizations reflected in a measure differing from
the Van Vleck determinant by corrections associated with the curvature of the manifold. As
a consequence, the Hamiltonian operator in the Schrödinger equation had a term proportional
to h̄2R, whereR is the curvature scalar (see also [4, 12] for Newtonian systems, and [9] for
relativistic systems).

The skeletonization proposed in [11] successfully retains the covariance of the system,
but it does not treat coordinates and momenta on an equal footing (a desirable feature in a
canonical formalism).

In [13] the use of complete solutions of the Hamilton–Jacobi equation in the skeletonization
has been suggested. A complete solution [14, 15]φ(q,P , t) (P ′ aren integration constants)
can be regarded as the generator of a canonical transformation:p = ∂φ/∂q, Q = ∂φ/∂P ,
where(Q,P ) is a set of classically conserved variables. Then dφ = p·dq+Q·dP−H dt , and
1φP ≡ φ(q′′,P , t ′′) − φ(q′,P , t ′) coincides with the canonical functional action evaluated
along a path such thatP = const. Besides,1φP is stationary whenP has the value
corresponding to the classical path joining(q′, t ′) and (q′′, t ′′); in that case1φP turns out
to be the Hamilton principal function [15]. These properties could make1φP a candidate to
take part in the skeletonizationS({qk,pk, tk}).

But in order to obtain the propagator, some requirements concerned with the behaviour
at short times and the character of the substitutionp → P—which must be well defined in
all phase space—should be fulfilled by the complete solution to be chosen. In addition, the
canonical coordinates and momenta should enter the skeletonization on an equal footing.

The rest of this paper is devoted to emphasizing the role played in phase-space path
integration by two related complete solutions of the Hamilton–Jacobi equation, which will
be called the Jacobi principal functions. In section 2 a scheme of skeletonization putting
canonical coordinates and momenta on an equal footing suggests the initial condition that
must be fulfilled by the complete solutions to be used. In section 3 the infinitesimal propagator
induced by the path integration is obtained once the measure is worked up into a form that
gives the same status to both arguments in the propagator. Section 4 explains how to treat a
classical system with an arbitrary potential, in order to get the result (4) for the infinitesimal
propagator. Section 5 shows the ordering for the Hamiltonian operator that is induced by the
propagator of section 3. The conclusions are displayed in section 6.

2. Skeletonization in phase space: the Jacobi principal function

In order to introduce a skeletonization procedure treating coordinates and momenta on an equal
footing, one should define a recipe joining classical pieces determined by mixed boundaries
(qk,pk+1) or (pk, qk+1). Then a pathq(t), p(t) should be skeletonized by alternately giving the
values of canonical coordinates and momenta at eachtk, and replacing the canonical functional
action by something like

S({qk,pk, tk}) =
(N−2)/2∑
k=0

{J (q2k+2t2k+2|p2k+1t2k+1) + J (p2k+1t2k+1|q2kt2k)}. (7)

The building blocksJ (qt ′|pt) andJ (pt ′|qt) should be functions associated with the classical
system, making the skeletonized action stationary on the classical path in phase space. A
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comparison with equation (3) suggests that the stationary condition
∂

∂p2k+1
J (q2k+2t2k+2|p2k+1t2k+1) +

∂

∂p2k+1
J (p2k+1t2k+1|q2kt2k) = 0 ∀k (8)

should mean that the final canonical coordinates of the classical piece betweent2k andt2k+1

coincides with the initial canonical coordinates of the classical piece betweent2k+1 andt2k+2.
Once the stationary value for the momenta is replaced in equation (7), the skeletonization
should go to the one of equation (2), so guaranteeing the continuity of bothq andp at t2k+1.

If the system exhibits invariance under a general coordinate change, then the
skeletonization and the measure must preserve that invariance, in order that the quantization is
independent of the chosen coordinates. Therefore bothJ in equation (7) should be invariant.

We are going to define∂J/∂p to be the coordinate canonically conjugated top; so
we should look for coordinates transforming contravariantly top. We will assume that the
configuration space is a Riemannian manifoldM; thus, normal coordinates—which transform
like the components of a vector at the origin of coordinates—could be introduced†. Let us
choose a pointO ∈ M as the origin of normal coordinates. Let{ea} be a basis for the
tangent spaceTO at O. To assign normal coordinates to a pointP , consider the geodesic
joining O andP‡ and defineσ = su, wheres = ∫ √

gij dqi dqj is the (invariant) length
of the geodesic betweenO andP , andu ∈ TO is the unitary vector tangent to the geodesic
atO. The componentsσa(qj ) of the vectorσ ∈ TO are normal coordinates forP [16]. By
differentiating the invariant Hamilton principal function with respect to the normal coordinates
of the (initial) final boundary, one gets the (initial) final momenta(−) pa = ∂S/∂σ a; thuspa
are the components of a formp = paea ∈ T ∗O . The set of canonically conjugated variables
{(σ a, pa)} is invariant under changesqj → qj

′
; (σ a, pa) only change under changes of the

basis{ea} in TO (and its dual basis{ea} in T ∗O).
Now we will introduce two invariant Legendre transforms of the Hamilton principal

functionS(q′′t ′′|q′t ′):
J (q′′t ′′|p′t ′) ≡

(
S − ∂S

∂σ ′a
σ ′a
)
p′a=−∂S/∂σ ′a

(9)

and

J (p′′t ′′|q′t ′) ≡
(
S − ∂S

∂σ ′′a
σ ′′a

)
p′′a=∂S/∂σ ′′a

(10)

that will be calledJacobi principal functions. They can be regarded as the evaluation on the
classical trajectory of a functional action that has been added with surface terms to make it
stationary under variations with mixed boundaries left fixed.

In spite of their definition in terms of the Legendre transform interchangingσa andpa, the
Jacobi principal functions can be written, if preferred, as functions of a different set of canonical
coordinates connected with the normal ones by means of a canonical point transformation

qj = qj (σ a) pj = ∂σ a

∂qj
pa.

Thepj transform like the components of a formp ∈ T ∗P on the coordinate basis.
From the properties of the Legendre transform, one easily gets thatJ (q′′t ′′|p′t ′) and

−J (p′′t ′′|q′t ′) generate contact transformations:

p′′j =
∂J (q′′t ′′|p′t ′)

∂q ′′j
σ ′a = ∂J (q′′t ′′|p′t ′)

∂p′a
. (11)

† Actually, only a connection is needed to define normal coordinates.
‡ We assume a global topology such that any pair of points is joined by a unique geodesic.
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and

σ ′′a = −∂J (p
′′t ′′|q′t ′)
∂p′′a

p′j = −
∂J (p′′t ′′|q′t ′)

∂q ′j
. (12)

Whent ′′ = t ′ they generate the identity

J (qt |pt) = paσ a(qj ) (13)

J (pt |qt) = −paσ a(qj ). (14)

J (q′′t ′′|p′t ′) and−J (p′′t ′′|q′t ′) are complete solutions of the Hamilton–Jacobi equation
in both arguments (take∂/∂t ′′ and∂/∂t ′ in equations (9) and (10), and use equations (11) and
(12)):

∂J (qt ′′|pt ′)
∂t ′′

= −H
(
qj ,

∂J

∂qj
, t ′′
)

∂J (qt ′′|pt ′)
∂t ′

= H
(
σa = ∂J

∂pa
, pj , t

′
)

(15)

−∂J (pt
′′|qt ′)

∂t ′′
= H

(
σa = − ∂J

∂pa
, pj , t

′′
)

∂J (pt ′′|qt ′)
∂t ′

= H
(
qj ,− ∂J

∂qj
, t ′
)
. (16)

By changingt ′′ ←→ t ′ in equations (15) and (16) one realizes that

J (pt ′′|qt ′) = −J (qt ′|pt ′′). (17)

If the system is conservative, then the Jacobi principal functions depend ont ′′ andt ′ only
through the differencet ′′ − t ′. Therefore,J (qt ′|pt ′′) = J (q,p, τ ≡ ∆t), and the pieces of
the skeletonized action (7) have the form

J (q2k+2t2k+2|p2k+1t2k+1) + J (p2k+1t2k+1|q2kt2k) = J (q2k+2,p2k+1, τ2k+1)

−J (q2k,p2k+1,−τ2k). (18)

Thus the skeletonization (7) gets the form1φP proposed in [13], although a specific complete
solution of the Hamilton–Jacobi equation is being used here.

Even for a nonconservative system, the short-time limit of the skeletonization (7) is

J (q2k+2t2k+2|p2k+1t2k+1) + J (p2k+1t2k+1|q2kt2k)

' [pa2k+1σ
a

2k+2−H(σa2k+2, pj 2k+1, t2k+1)1t2k+1]

−[pa2k+1σ
a

2k +H(σa2k, pj 2k+1, t2k+1)1t2k]. (19)

On any smooth path it is valid thatσa2k+2→ σa2k whent2k+2→ t2k. Thus the skeletonized
action goes to the canonical functional action:

J (q2k+2t2k+2|p2k+1t2k+1) + J (p2k+1t2k+1|q2kt2k) −→ pa2k+1(σ
a
2k+2− σa2k)

−H(σa2k, pj 2k+1, t2k+1)(t2k+2− t2k). (20)

The skeletonization scheme proposed in this section is based on a pair of complete solutions
of the Hamilton–Jacobi equation (in both arguments) that treat canonical coordinatesσa and
momentapa on an equal footing; this fact is evident in the initial conditions (13) and (14).
The Jacobi principal functions do not depend on the chart{qj } or on the basis of the tangent
space atO. They do depend on the way the configuration space has been cut from the phase
space (the quantum propagation is not invariant under arbitrary canonical transformations).
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3. The propagator

In order to give sense to the functional integration in phase space

K(q′′t ′′|q′t ′) =
∫
Dp(t)Dq(t) exp

[
i

h̄
S[q(t),p(t)]

]
(21)

our attention must now turn to the measure. Since the functional action is going to be
replaced by an invariant skeletonized version, the ‘magical’ measureDp(t)Dq(t) should also
be consequently replaced by a measure in the space of the variables{q2k,p2k+1}. This measure
must be able to retain the geometrical behaviour of the propagator, which is apparent in the
manner of propagating the wavefunction:

9(q′′, t ′′) =
∫

dq′K(q′′t ′′|q′t ′)9(q′, t ′). (22)

If the wavefunction9 is regarded as scalar, then the propagator should be invariant in its final
argument but a density in its initial argument. However, a scalar wavefunction would compel
us to use an invariant measureµ(q) dq in the inner product of the Hilbert space (the density
µ would be ultimately dictated by the result of the path integration [9]). So it may be more
convenient to regard the wavefunction as a density of weight1

2. In this case the inner product
of the Hilbert space is

(9,8) =
∫

dq9∗8 (23)

whatever the generalized coordinates describing the system are. Thus the propagator in
equation (22) must be a density of weight1

2 in both arguments.
The issue of the measure can be studied at the level of an infinitesimal propagator. In fact,

due to the composition law

K(q′′t ′′|q′t ′) =
∫
K(q′′t ′′|qN−1tN−1) dqN−1K(qN−1tN−1|qN−2tN−2) . . .

. . .dq2K(q2t2|q1t1) dq1K(q1t1|q′t ′) (24)

—which holds whenever the added paths go forward in time—the finite propagator can be
retrieved by composing infinitesimal propagators. Ift ′′ − t ′ = ε is infinitesimal, then one
should only integratep at some intermediate timet . However the measure dp(t) does not
allow for a propagator behaving like a density in its argumentsq′ and q′′. The use of

dnp′j = |det
∂p′j
∂p

(t)
a

| dnp(t)a instead of dp(t) is suitable when the wavefunction is regarded as

a scalar, because the propagator will result a density inq′. However, if the propagator has to
be a density of weight12 in both arguments, then the Jacobian in the previous measure must be
split into two factors that will give an equal weight top′ andp′′:∣∣∣∣∣det

∂p′′j
∂p

(t)
a

∣∣∣∣∣
1/2

dnp(t)a

∣∣∣∣∣det
∂p′j
∂p

(t)
a

∣∣∣∣∣
1/2

=
∣∣∣∣det

(
∂2J (q′′t ′′|pt)
∂q ′′j ∂pa

)∣∣∣∣1/2

×dnp(t)a

∣∣∣∣det

(
−∂

2J (pt |q′t ′)
∂q ′j ∂pa

)∣∣∣∣1/2 . (25)

Concretely, the infinitesimal propagator has the form

K(q′′t ′′ = t ′ + ε|q′t ′) =
∫

dnpa
(2πh̄)n

∣∣∣∣ det
∂2J (q′′t ′′|pt)
∂q ′′j ∂pa

∣∣∣∣1/2 ∣∣∣∣det−∂
2J (pt |q′t ′)
∂pa∂q ′j

∣∣∣∣1/2
× exp

[
i

h̄
(J (q′′t ′′|pt) + J (pt |q′t ′))

]
(26)
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wheret is prescribed to be the mid time:t ≡ t ′ + (ε/2) = t ′′ − (ε/2). Whenε = 0, one
gets the orthonormality relation between eigenstates of the operatorq̂ (see equations (13) and
(14)).

Since canonical coordinates and momenta were treated on an equal footing, one realizes
that the propagator in thepa-representation which is consistent with equation (26) is

K(p′′t ′′ = t ′ + ε|p′t ′) =
∫

dnqj

(2πh̄)n

∣∣∣∣det−∂
2J (p′′t ′′|qt)
∂p′′a∂qj

∣∣∣∣1/2 ∣∣∣∣det
∂2J (qt |p′t ′)
∂qj ∂p′a

∣∣∣∣1/2
× exp

[
i

h̄
(J (p′′t ′′|qt) + J (qt |p′t ′))

]
. (27)

It will become clear in section 5 that the prescription of mid time in equations (26) and
(27) together with the splitting of the Jacobian, guarantee the hermiticity of the Hamiltonian
operator and the unitarity of the evolution.

4. Classical systems

To illustrate the use of equation (26), let us consider a one-dimensional classical system
governed by the Hamiltonian:

H = p2

2m
+ V (q). (28)

We will show how to manage the integration in equation (26) in order to get the infinitesimal
propagator in the form of equation (4).

Since the metric in the Hamiltonian is a standard Euclidean metric (gij = δij ), the
coordinateq is the normal coordinate. The Jacobi principal functionJ (q, p, τ ) can be guessed
by writing

J (q, p, τ ) = pq − p2

2m
τ +

∞∑
l=1

Jl(q, p)τ
l. (29)

Then one solves the Hamilton–Jacobi equation order by order inτ , and obtains

J1 = −V (q)
J2 = pV ′(q)

2m

J3 = −p
2V ′′(q)
6m2

− V
′(q)2

6m
(30)

J4 = p3V ′′′(q)
24m3

+
5

24

p

m2
V ′(q)V ′′(q)

J5 = − 1

120

p4

m4
V ′′′′(q)− 1

15

p2V ′′(q)2

m3
− 3

40

p2V ′(q)V ′′′(q)
m3

− 1

15

V ′(q)2V ′′(q)
m2

.

The recurrence formulae is

Jl+1 = − 1

2(l + 1)m

l∑
k=0

∂Jk

∂q

∂Jl−k
∂q

l > 1 (31)

whereJ0 ≡ pq. EachJl is polynomical inp. Let us concentrate on the higher degree
contributions; their addition is

−
∞∑
l=1

1

l!

(
− p
m

)l−1
V (l−1)(q)τ l = m

p

∫ q−pτ/m

q

V (q) dq. (32)
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We are going to replace this result, and∂2J/∂q∂p = 1 + O(ε2), in the integrand of
equation (26). After the substitutionp→ P ≡ pε/(2m), one gets

K(q ′′t ′′ = t ′ + ε|q ′t ′) =
( m

πh̄ε

)
exp

[
im(1q)2

2h̄ε

]{∫
dP exp

[
− i2m

h̄ε

(
P − 1q

2

)2

− iε

2h̄P

(∫ q ′′

q ′′−P
V (q) dq +

∫ q ′+P

q ′
V (q) dq

)
+ · · ·

]
+O(ε2)

}
. (33)

The contribution of the potential to the phase will be expanded aboutP = 1q/2:

1

2P

(∫ q ′′

q ′′−P
V (q) dq +

∫ q ′+P

q ′
V (q) dq

)
= V̄ − 2

1q
1̄V

(
P − 1q

2

)

+
4

(1q)2
1̄V

(
P − 1q

2

)2

+ · · · (34)

where

V̄ ≡ 1

1q

∫ q ′′

q ′
V (q) dq 1̄V ≡ V̄ − V

(
q ′ + q ′′

2

)
. (35)

Those contributions that were not explicitly written in equation (33) can be controlled by
means of the result [17]∫

dx x2γ exp

[
− i2m

h̄ε
x2

]
∝
(
h̄ε

2m

)γ+ 1
2

. (36)

Then the leading contribution to the integration (26) is

K(q ′′t ′′ = t ′ + ε|q ′t ′) =
√

m

2iπh̄ε
exp

[
i

h̄

(
m(1q)2

2ε
− ε

1q

∫ q ′′

q ′
V (q) dq

)]
. (37)

The infinitesimal propagator (37) has the form (4). In fact the phase in equation (37)
solves the Hamilton–Jacobi equation in each argument at orderε (for all values ofq ′ andq ′′)†.
The Schr̈odinger equation is satisfied at the lowest order in ¯hε/m.

5. Operator ordering

Each recipe to path integrate implies an operator ordering for the Hamiltonian in the wave
equation. Our interest in this section is to find the operator ordering associated with the
infinitesimal propagator (26). Let us derive equation (26) with respect toε, atε = 0:

ih̄
∂

∂ε
K(q ′′t ′ + ε|q ′t ′)

∣∣∣∣
ε=0

=
∫

dp

2πh̄
exp

[
i

h̄
p1σ

]
×
{

ih̄

4

(
−∂

2H(q ′′, p)
∂q ′′∂p

+
∂2H(q ′, p)
∂q ′∂p

)
+

1

2
(H(q ′′, p) +H(q ′, p))

}
(38)

where the short-time approximation (19) has been used.
Equation (38) is linear inH . If H can be expanded in a power series, then it will be

sufficient to handle the ordering for a Hamiltonian

H = qmpk. (39)

† Although the phase in equation (37) has the merit of being a complete solution of the Hamilton–Jacobi equation at
orderε—it is the Hamilton principal function at that order—the integration onq in the composition of infinitesimal
propagators (equation (24)) will be not sensitive to a replacement ofV̄ byV ((q ′′ + q ′)/2), or (V (q ′) +V (q ′′))/2, etc.
as a consequence of the result (36).
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If q is a normal coordinate, then

ih̄
∂

∂ε
K(q ′′t ′ + ε|q ′t ′)

∣∣∣∣
ε=0

=
∫

dp

2πh̄
exp

[
i

h̄
p1q

]
×
{

ih̄km

4
pk−1(−q ′′m−1 + q ′m−1) +

pk

2
(q ′′m + q ′m)

}
. (40)

Taking into account equation (22),

Ĥ9(q ′′, 0) =
∫

dq ′ dp
2πh̄

exp

[
i

h̄
p1q

]
×
{

ih̄km

4
pk−1(−q ′′m−1 + q ′m−1) +

pk

2
(q ′′m + q ′m)

}
9(q ′, 0)

= − q ′′m−1 ih̄km

4

(
h̄

i

∂

∂q ′′

)k−1 ∫ dq ′ dp
2πh̄

exp

[
i

h̄
p1q

]
9(q ′, 0)

+
ih̄km

4

(
h̄

i

∂

∂q ′′

)k−1 ∫ dq ′ dp
2πh̄

q ′m−1 exp

[
i

h̄
p1q

]
9(q ′, 0)

+
1

2
q ′′m

(
h̄

i

∂

∂q ′′

)k ∫ dq ′ dp
2πh̄

exp

[
i

h̄
p1q

]
9(q ′, 0)

+
1

2

(
h̄

i

∂

∂q ′′

)k ∫ dq ′ dp
2πh̄

q ′m exp

[
i

h̄
p1q

]
9(q ′, 0)

= ih̄km

4
[p̂k−1, q̂m−1]9(q ′′, 0) +

1

2
(p̂kq̂m + q̂mp̂k)9(q ′′, 0). (41)

This means that the Hamiltonian operator is

Ĥ = 1

2
(p̂kq̂m + q̂mp̂k) +

ih̄km

4
[p̂k−1, q̂m−1]. (42)

The operatorĤ is Hermitian thanks to the mid time prescription in section 3, which gave
an equal weight to the terms depending onq ′ andq ′′ in equation (38).

6. Conclusions

We have proposed a scheme to path integrate in phase space, which is applicable to Hamiltonian
systems whose configuration space is a manifold where normal coordinates (i.e., coordinates
behaving like the components of a vector in the tangent space at the origin) can be introduced.
The skeletonization is based on the invariant Jacobi principal functions —those related with
the variational principles of mechanics for mixed boundaries left fixed—and the measure gives
to the propagator the character of a density of weight1

2 in each argument. The so obtained
infinitesimal propagators (26) and (27) naturally satisfy the Schrödinger equation, once the
Hamiltonian operator is build in agreement with the operator ordering (42) induced by the path
integral recipe.

The infinitesimal propagators (26) and (27) can be read in terms of the modes

Fp(qj , t) ≡
[
det

(
1

2πh̄

∂2J (q,p, t)

∂qj ∂pa

)]1/2

exp

[
i

h̄
J (q,p, t)

]
(43)

which are well behaved on all phase space at short times (the matrix∂2J/∂qj∂pa is not
singular because the relation between initial and final momenta is bi-univoque at short times).
At t = 0 these modes are eigenfunctions of the momentap̂a = −ih̄∂/∂σ a based at the
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origin O, because of the boundary conditionJ (q,p, t = 0) = paσ
a. Therefore,Fp(qj , t)

is a short-time approximation for〈qj |Û (t)|pa〉, and{Fp} is a basis of short-time solutions
of the Schr̈odinger equation whatever the Hamiltonian system is. A change of the originO

implies a change of the basis{Fp}; of course, all bases{Fp} are equally good for expanding
the propagator.

For free systems it isJ (q,p, t) = paσ
a − H(pa)t , and the modes (43) are certainly

exact solutions of the Schrödinger equation. They span the basis of eigenstates of the
(conserved) momentâpa. In this case the propagator (26) is exact (i.e., it is the finite
propagator). In particular, the Newton–Wigner propagator (5) for the relativistic particle—
H(p) = (p2 +m2)1/2—can be obtained by integrating on the momenta in equation (26) [9].

In the case of the classical system of section 4, the modesFp satisfy the equation (use
equation (15))(

ih̄
∂

∂t
+
h̄2

2m

∂2

∂q2
− V (q)

)
Fp = h̄2

2m

(
∂2J

∂q∂p

)−1/2
∂2

∂q2

[(
∂2J

∂q∂p

)1/2
]
Fp. (44)

This equation is typical for any phaseJ being a solution of the Hamilton–Jacobi equation, and
is commonly used to highlight the semiclassical character (¯h → 0) of wavefunctions having
the form (43). However, as was already stated, the Jacobi principal functionJ (q,p, t) confers
an additional property to the modes (43)—which is the one exploited in this paper—and allows
a different reading of equation (44): the modesFp are short-time solutions of the Schrödinger
equation,for any value of̄h. In fact, the results in section 4 show us that the rhs in equation (44)
is zero for a quadratic potential† (Fp is an exact solution), ¯h2t4/(8m3)(V ′′′)2Fp +O(t5) for a
cubic potential, and ¯h2t2/(8m2)V ′′′′Fp +O(t3) in a more general case.

The substitution of the functional action by a skeletonized version in the discrete-time
approximation is one of the ways to give a meaning to the functional integration (1). A different
approach to the same problem is the operator symbol method [18], where the path integral
results from the product of thesymbolsassociated with the short-time evolution operator.
The product of symbols involves an integration containing the information about the operator
ordering, which amounts to the prescription of the skeletonization in phase space. The different
rules to generate the ordering for the quantum operatorĝ associated with a functiong(q, p)
in phase space, can be summarized as follows [19]:

ĝ←→ f

(
−i

∂

∂q
,−i

∂

∂p

)
exp

(
− ih̄

2

∂2

∂q∂p

)
g(q, p) (45)

whereĝ in equation (45) is the normal form of the operator (the power series expansion where
the q precede thep), andf (u, v) contains the information about the ordering. Some well
known rules of ordering are shown in table 1 [20].

The Weyl ordering is equivalent to a skeletonization where the Hamiltonian is evaluated
in (q ′′+q ′)/2. The symmetric ordering corresponds to replace the Hamiltonian by [H(q ′′, p)+
H(q ′, p)]/2 [21]. In this sense, the skeletonization prescribed in this paper seems to be related
with the symmetrization rule (see equation (19)). Effectively, the ordering (42) for the normal
coordinates and their conjugated momenta begins with a symmetrized contribution coming
from the mean Hamiltonian in equation (38). However, our prescription includes a nontrivial
measure (the Jacobians in equation (25)), which is needed in order that the wavefunction retains
its condition of being a density of weight1

2. This measure is responsible for the second term

† If V (q) = mω2q2/2, the Jacobi principal function isJ (q, p, t) = −p2 tan(ωt)/(2mω) + qp/ cosωt −
mωq2 tan(ωt)/2. ThusJ (q, p, t) reflects the equivalent roles ofq and p in both the initial condition and the
Hamiltonian.
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Table 1.

Name f (u, v) g(q, p) = qmpk

Standard exp[i2 h̄uv] q̂mp̂k

Anti-standard exp[− i
2 h̄uv] p̂k q̂m

Symmetric cos[12 h̄uv] 1
2(q̂

mp̂k + p̂k q̂m)
Weyl 1 1

2m
∑m
l=0

(
m
l

)
q̂m−l p̂k q̂l

Born–Jordan 2(h̄uv)−1 sin[1
2 h̄uv] 1

k+1

∑k
l=0 p̂

k−l q̂mp̂l

in the ordering (42). Thus the functionf (u, v) associated with the ordering (42) is

f (u, v) = cos[12h̄uv] + 1
2h̄uv sin[1

2h̄uv]. (46)

Naturallyf fulfills the requirements

lim
h̄→0

f = 1 lim
h̄→0

ḟ = 0 (47)

that guarantee the classical limit [19].
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