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Abstract. The canonical functional action in the path integral in phase space is discretized by
linking each pair of consecutive vertebral pointgandpy+1 or p; andg,+1—through the invariant
complete solution of the Hamilton—-Jacobi equation associated with the classical path defined by
these extremes. When the measure is chosen to reflect the geometrical character of the propagator
(it must behave as a density of Weiggltin both of its arguments), the resulting infinitesimal
propagator is cast in the form of an expansion in a basis of short-time solutions of the wave
equation, associated with the eigenfunctions of the initial momenta canonically conjugated to a set
of normal coordinates. The operator ordering induced by this prescription is a combination of a
symmetrization rule coming from the phase, and a derivative term coming from the measure.

1. Introduction

By taking Dirac’s ideas [1] into account, R P Feynman explained how non-relativistic quantum
mechanics can be formulated from principles that make contact with the variational principles
of Lagrangian mechanics [2]. Feynman showed that quantum mechanics can be based on the
statement that theropagator i.e. the probability amplitude of finding the system in the state

q" att”, given that it was found iig’ at+’, can be obtained by means of the path integration:

K(q't"q't") = / Dq(t) exp[}%S [q(t)]} @

where S[q(¢)] is the functional action of the system. Since the path integral is a functional
integration, one gives a meaning to equation (1) by replacing each pattkbletonizedersion
where the patly(z) is represented by a set of interpolating poi€ys, #;), k = 0,1,..., N,

q0 =4 ,qv = q", qx = q(t). Then the functional action is replaced by a functiify, #}),

and the functional integration reduces to integrate the varighlés= 1, ..., N —1%. Finally,

the limit Aty = 441 — iz — 0 (i.e.,N — 00) is performeds.

The functionS ({qx, % }) is chosen to be [2,4]:
N-1

Sae ) = ) S@uatisalaet) 2
k=0

T E-mail addressferraro@iafe.uba.ar

T The convergence is assured by endowing the time with an imaginary part of proper sign.
§ The rigorous mathematical meaning of this limit can be consulted in [3] and references therein.
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whereS (qw+1ti+11qrti) is the Hamilton principal function, i.e.the complete solution (in each
argument) of the Hamilton—Jacobi equation that is equal to the functional action evaluated on
the classical path joining its arguments. Thus, the skeletonization (2) replaces eagfrpath

by a succession of pieces defined by the system itself, which join the interpolating points. The
skeletonized action (2) retains the essential classical property of the functional action; namely
it is stationary on the points interpolating the entire classical path betwéerf) and(q”, t”).

In fact, S({qx, #}) is stationary when

0 0
— S(greiti+1lqity) + — S(qetilgr—1tx—1) =0 vk 3
gy 0qx

meaning that thg, are such that the final momentum of the classical piece betwgen 1)
and (qi, 1), matches the initial momentum of the classical piece betwegns;) and
(qr+1, ti+1)- This continuity guarantees that the poili€g;, )} are interpolating points of
the entire classical path betwegyi, ') and(q”, t”).

Although a proper skeletonization for the path integral exists in the configuration space,
the measure in equation (1) remains ambiguous. For instance, the finite propagator for a
quadratic Lagrangian is known to be [5, 6]

"1 I I 82S( Ht”' /t/) 1/2 I " 1 147
K(q"t"|q't) = [det<h—5#>} exp[ﬁS(q t"|q't )} )

This expression is also valid for the infinitesimal propagator of any classical system [7]. The
prefactor in equation (4) is the Van Vleck determinant [8], which takes part in the measure,
and is nontrivial even for the short-time pieces of the skeletonization.

A different kind of example is the (finite) Newton—-Wigner propagator for the relativistic
particle in flat space—time [9]:

(t" — t")m?c® i
K //t// /t/ — _ K :S //t// /t/ 5
(q"t"lq'th e g (q"t"lq'th (5)
(in 1 + 1dimensions), wher§(q"t"|q't") = —mc(c*(t”" — t')? — (¢" — ¢")»)Y?, andK; is a

modified Bessel function. In this case, the exponential of the Hamilton principal function does
not cleanly appear in the propagator, and neither does it in the short time version (actually the
propagator (5) gets the form (4), not wh€n— ¢’ but in the classical limit when the Compton
wavelengthz/(mc) goes to zero). Results of this sort could indicate a failure of (1) to give the
guantum propagator for an arbitrary system [10]. Anyway, it lays bare our complete ignorance
of the measure in the representation (1).

It was thought that a path integration in phase space could remedy this problem because
there is a privileged measure in phase space: the Liouville meaguhe/@xh)" (n is the
dimension of the configuration space), which is invariant under canonical transformations.
In this case, one should find an appropriate recipe for the skeletonization of the canonical
functional action

Sla(®), p(1)] =/ (p(1) - q(t) — H(q, p)) dt (6)

i.e., one should replace the functional in equation (6) by a func86;, px, #}) Of
interpolating points for the patl(z), p(¢). The functionS({qx, p«, tx}) should be dictated
by the system itself.

In [11] several recipes were essayed for a Newtonian system moving on a Riemannian
manifold. Since the datégy, pi; qi+1, Pr+1) Overdeterminate the classical path between
andr..1, the basic idea was to use the classical piece in the configuration space (just as in the
previous case), together with the parallel transpogt(@f) = p, along that classical piece. Of
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course, the parallel transportpf does not end ip+1 (unless the points interpolate the entire
classical path between and:”). So the skeletonized path proves to be discontinuoys in
(an unavoidable fact in phase space). The different recipes for the skeletonization came from
the possibility of replacing the metric by a bitensor with the right coincidence limit. After
the momenta were integrated on, an infinitesimal propagator similar to the one of equation (4)
was obtained. However, the different skeletonizations reflected in a measure differing from
the Van Vleck determinant by corrections associated with the curvature of the manifold. As
a consequence, the Hamiltonian operator in the @tihger equation had a term proportional
to 2R, whereR is the curvature scalar (see also [4, 12] for Newtonian systems, and [9] for
relativistic systems).

The skeletonization proposed in [11] successfully retains the covariance of the system,
but it does not treat coordinates and momenta on an equal footing (a desirable feature in a
canonical formalism).

In[13]the use of complete solutions of the Hamilton—Jacobi equation in the skeletonization
has been suggested. A complete solution [14¢l@&] P, ¢) (P’ aren integration constants)
can be regarded as the generator of a canonical transformatiend¢/dq, Q = 3¢ /0P,
where(Q, P) is aset of classically conserved variables. Th¢ntp-dg+Q-dP — H dr, and
App = o(q", P,t") — ¢(q, P, ') coincides with the canonical functional action evaluated
along a path such thaP = const. BesidesA¢p is stationary whenP has the value
corresponding to the classical path joiniag, ) and (q”, t”); in that caseA¢p turns out
to be the Hamilton principal function [15]. These properties could masg a candidate to
take part in the skeletonizatic®({qy, px, fx}).

But in order to obtain the propagator, some requirements concerned with the behaviour
at short times and the character of the substitutior- P—which must be well defined in
all phase space—should be fulfilled by the complete solution to be chosen. In addition, the
canonical coordinates and momenta should enter the skeletonization on an equal footing.

The rest of this paper is devoted to emphasizing the role played in phase-space path
integration by two related complete solutions of the Hamilton—Jacobi equation, which will
be called the Jacobi principal functions. In sect® a scheme of skeletonization putting
canonical coordinates and momenta on an equal footing suggests the initial condition that
must be fulfilled by the complete solutions to be used. In section 3 the infinitesimal propagator
induced by the path integration is obtained once the measure is worked up into a form that
gives the same status to both arguments in the propagator. Section 4 explains how to treat a
classical system with an arbitrary potential, in order to get the result (4) for the infinitesimal
propagator. Section 5 shows the ordering for the Hamiltonian operator that is induced by the
propagator of section 3. The conclusions are displayed in section 6.

2. Skeletonization in phase space: the Jacobi principal function

In order to introduce a skeletonization procedure treating coordinates and momenta on an equal
footing, one should define a recipe joining classical pieces determined by mixed boundaries
(qr, Pr+1) OF (pr, qr+1). Then a patly(z), p(¢) should be skeletonized by alternately giving the
values of canonical coordinates and momenta at gaahd replacing the canonical functional
action by something like
(N=2)/2
SUge P i) = Y {J (qusataurzlpaceatass) + J (Pasataclgautz)).  (7)
k=0
The building blocks/ (gt'|pt) andJ (pt’|qt) should be functions associated with the classical
system, making the skeletonized action stationary on the classical path in phase space. A
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comparison with equation (3) suggests that the stationary condition

J (qor+2tor+2| Por+1t2k+1) 5 J (por+ato+1lgator) =0 vk 8)

0P2r+1 D2s+1

should mean that the final canonical coordinates of the classical piece bepveaadr,;.,
coincides with the initial canonical coordinates of the classical piece betyee@andry.o.

Once the stationary value for the momenta is replaced in equation (7), the skeletonization
should go to the one of equation (2), so guaranteeing the continuity ofjantdp at 7y ;.

If the system exhibits invariance under a general coordinate change, then the
skeletonization and the measure must preserve that invariance, in order that the quantization is
independent of the chosen coordinates. Therefore batrequation (7) should be invariant.

We are going to defin@J/dp to be the coordinate canonically conjugatedptoso
we should look for coordinates transforming contravariantlptoWe will assume that the
configuration space is a Riemannian maniféitj thus, normal coordinates—which transform
like the components of a vector at the origin of coordinates—could be introducedt. Let us
choose a poinD € M as the origin of normal coordinates. Lft,} be a basis for the
tangent spacé&, at O. To assign normal coordinates to a poit consider the geodesic
joining O and P$ and definer = su, wheres = [,/g;; dg’ dg/ is the (invariant) length
of the geodesic betweef and P, andu € Ty is the unitary vector tangent to the geodesic
at 0. The components(gq/) of the vectore € T, are normal coordinates fat [16]. By
differentiating the invariant Hamilton principal function with respect to the normal coordinates
of the (initial) final boundary, one gets the (initial) final mometa p, = 9S/d0¢; thusp,
are the components of a form= p,e® € T;. The set of canonically conjugated variables
{(c“, po)}is invariant under changes — ¢’’; (¢“, p,) only change under changes of the
basis{e,} in Ty (and its dual basige} in T,5).

Now we will introduce two invariant Legendre transforms of the Hamilton principal
functionS(q"t"|q't'):

J(g"t"p't") = (S - ﬂ6“’) )
N
and
aS

na
B 80”“0 )
pr=05/d0"

that will be calledJacobi principal functions They can be regarded as the evaluation on the
classical trajectory of a functional action that has been added with surface terms to make it
stationary under variations with mixed boundaries left fixed.

In spite of their definition in terms of the Legendre transform interchangfrenndp,,, the
Jacobi principal functions can be written, if preferred, as functions of a different set of canonical
coordinates connected with the normal ones by means of a canonical point transformation

ao
dq’
The p; transform like the components of a fone 77 on the coordinate basis.

From the properties of the Legendre transform, one easily gets/ilgét”|p't’) and
—J(p't"|q't") generate contact transformations:

@), @)
IT T g e

J("t"|q't) = (S (10)

q’ =q’ (") pi=—"Pa

(11)

T Actually, only a connection is needed to define normal coordinates.
T We assume a global topology such that any pair of points is joined by a unique geodesic.
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and

8] ”t” /t/ 8.] //l,// /l,/
gra — 0@ qT) o= — P7lg'r) (12)
opl! / dq'7

Whent” = ¢’ they generate the identity
J(qt|pt) = pao®(q’) (13)
J(ptlgt) = —p.o®(q’). (14)

J(q"t"|p't") and—J (p"t"|q't") are complete solutions of the Hamilton—Jacobi equation
in both arguments (tak&/a:” anda/at" in equations (9) and (10), and use equations (11) and

(12)):

aJ(qt"|pt' o aJ dJ (qt"|pt’ aJ

@) gy (g 2 @) _ (o= 00,0 (15)
ot 8ql ot apa

3J (pt"|qt' 9J 3J (pt"|qt’ 9

_8Jp"ler) _ ot = =2 3 llat) _ g/, ——,t|. (16)
at" ¥ at’ aqj

By changing” <— ¢’ in equations (15) and (16) one realizes that
J(pt"|qt") = —J (qt'|pt"). 17)

If the system is conservative, then the Jacobi principal functions depericaod?’” only
through the difference” — ¢'. Therefore,J(qt'|pt”) = J(q, p, T = At), and the pieces of
the skeletonized action (7) have the form

J (qok+2tor+2|Por+1tor+r) + J (Pa+tor+1larton) = J(Qok+2, D2k+1, Tok+1)
—J(qak, P2w+1, —T2k)- (18)

Thus the skeletonization (7) gets the for » proposed in [13], although a specific complete
solution of the Hamilton—Jacobi equation is being used here.
Even for a nonconservative system, the short-time limit of the skeletonization (7) is

J(qu+2tor+2|Par+1tou+1) + J (Dar+1tor+1l Qartan)
~ [Pag+10“ 22 — H(O 242, Djopsqs t2kw1) Atgra]
~[Pag+10"2% + H(0“ 2%, Pjopsqs tk+1) Atar]. (19)

On any smooth path itis valid tha, ,, — o5, whenty.o, — 1. Thus the skeletonized
action goes to the canonical functional action:

J(qo+2tor+2|Porsitok+1) + J (Par+1tors1l@orton) —> Pank+1(Ogpro — Op)
—H (0%, Pjopsqs tk+1) (ks — t21). (20)

The skeletonization scheme proposed in this section is based on a pair of complete solutions
of the Hamilton—Jacobi equation (in both arguments) that treat canonical coorditizdes
momentap, on an equal footing; this fact is evident in the initial conditions (13) and (14).
The Jacobi principal functions do not depend on the clagit or on the basis of the tangent
space aD. They do depend on the way the configuration space has been cut from the phase
space (the quantum propagation is not invariant under arbitrary canonical transformations).
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3. The propagator
In order to give sense to the functional integration in phase space

K(q't"|qt) = /Dp(t)Dq(t) exp[%S[q(t),p(f)]} (1)

our attention must now turn to the measure. Since the functional action is going to be
replaced by an invariant skeletonized version, the ‘magical’ me&p¢eDgq(r) should also

be consequently replaced by a measure in the space of the vafighlas;+1}. This measure

must be able to retain the geometrical behaviour of the propagator, which is apparent in the
manner of propagating the wavefunction:

V(" 1") = /dq/K(q”t”lq/t/)‘I/(q@t/)- (22)

If the wavefunctionV is regarded as scalar, then the propagator should be invariant in its final
argument but a density in its initial argument. However, a scalar wavefunction would compel
us to use an invariant measuyr€q) dq in the inner product of the Hilbert space (the density

w would be ultimately dictated by the result of the path integration [9]). So it may be more
convenient to regard the wavefunction as a density of W%gﬂm this case the inner product

of the Hilbert space is

(U, ®) = /dqllf*cb (23)

whatever the generalized coordinates describing the system are. Thus the propagator in
equation (22) must be a density of Weiggfln both arguments.

The issue of the measure can be studied at the level of an infinitesimal propagator. In fact,
due to the composition law

K(q"t"|q't") = / K(q"t"|gn-1ty-1) dgy_1 K (gn_1tn—_1lgn—2tN—2) - ..

... dg2K (q212|qut1) dq1 K (qut1]q't") (24)
—which holds whenever the added paths go forward in time—the finite propagator can be
retrieved by composing infinitesimal propagators.:”If ' = ¢ is infinitesimal, then one
should only integratg at some intermediate time However the measurep’ does not
allow for a propagator behaving like a density in its argumeyitand q”. The use of

d'p = |det;p%| d"p instead of ¢ is suitable when the wavefunction is regarded as

a scalar, because the propagator will result a densigy. ilowever, if the propagator has to
be a density of Weigh% in both arguments, then the Jacobian in the previous measure must be
split into two factors that will give an equal weightpéandp”:

n |4/2 , 11/2 1/2
/ on’. 82.] ary
det p(j) d' p det% =‘det<ﬂ>‘
9pa dPa 99" 9pa
32J (pt|q't)\ |*?
' p® |det( =L @ULT) (25)
¢ 39" 9pa

Concretely, the infinitesimal propagator has the form
aZJ(q//t// |pl) 1/2
39" 0pq

1/2

) 3%J (ptlq't)

det .
apa 86]"/

.1 / ' dnpa
K(qg't" =1 +elq't) = 2y

X EXD[;:(J(Q"I"IPI) + J(pth/t/))} (26)
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wherer is prescribed to be the mid time:= ¢’ + (¢/2) = t” — (¢/2). Whene = 0, one
gets the orthonormality relation between eigenstates of the opérédee equations (13) and
(14)).
Since canonical coordinates and momenta were treated on an equal footing, one realizes
that the propagator in the,-representation which is consistent with equation (26) is

ar j 82.] "¢ gt 1/2 82.] tio't 1/2
,C(p// gy +6|p’t’) _ Q_ . (p"t"|qt) (q |p't")
2 h)" aplaq’ dq’op,,
i /1 /!
X exp[ﬁ(J(p r'lqt) + J(qtlp't ))} - (27)

It will become clear in section 5 that the prescription of mid time in equations (26) and
(27) together with the splitting of the Jacobian, guarantee the hermiticity of the Hamiltonian
operator and the unitarity of the evolution.

4. Classical systems

To illustrate the use of equation (26), let us consider a one-dimensional classical system
governed by the Hamiltonian:
p2
H=—+V(@). (28)

We will show how to manage the integration in equation (26) in order to get the infinitesimal
propagator in the form of equation (4).

Since the metric in the Hamiltonian is a standard Euclidean megfic £ §7/), the
coordinatey is the normal coordinate. The Jacobi principal functi@g, p, ) can be guessed
by writing

2 %)
p
Jq.p. 1) =pg— ST+ > g p)r. (29)
m
Then one solves the Hamilton—Jacobi equation order by orderand obtains
J1=-V(q)
V'(q)
= p qu
2y ’ 2
rV'iq) Vg
Ja=— — 30
3 6m?2 6m (30)
SVW(q) .
Jo=—F—7— Y Zl_v( 9V(q)
P p* V) — 1 sz”(q)2 3pV(V"'(q) 1V(@)*V'(Qg)
>~ T 120m m3 40 m3 15  mZz
The recurrence formulae is
1 dJx 9,
Jisr = T (31)

2(l +1Dm = 8q aq

whereJo = pg. EachJ, is polynomical inp. Let us concentrate on the higher degree
contributions; their addition is

00 1 -1 m g—pt/m
-2 (_B) VD (@) = — V(g)dg. (32)
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We are going to replace this result, abtl//dgdp = 1 + O(€?), in the integrand of
equation (26). After the substitutign— P = pe/(2m), one gets

im(Ag)? i2 Ag\?
K@@'t" =t +¢€|g't) = (%) exp[%} { /dP exp[ - E—’Z (P - 7q>

(1" venraes [ vind )
—ﬁ(fq”_})vw) q+/, V(g) q)+~~-]+0(e>}. (33)

q
The contribution of the potential to the phase will be expanded aBcttAg/2:

1 /q” V(g)d +/q,+PV()d _v_ 2 av(p_2d
([, V@] 9dg) =V - >

4 - Agq 2
+— AV (P - =)+ 34
(Aqg)? ( 2 ) (34)
where
_ 1 q" B _ "+ q”
VE—/ V(q)dg szv—v<u). (35)
Aq (1/ 2

Those contributions that were not explicitly written in equation (33) can be controlled by
means of the result [17]

2 - y+l
/dx x% exp[—lﬁ—mx2i| x (;—6> ’ . (36)
€ m

Then the leading contribution to the integration (26) is

s ’ 147 m I m A 2 € q”
K@@'t =t +€lg'th = mexp[ﬁ< (Zj) _A_q/ V(q)dq)i|. 37)
V o

The infinitesimal propagator (37) has the form (4). In fact the phase in equation (37)
solves the Hamilton—Jacobi equation in each argument at effierall values ofy’ andg”)t.
The Schodinger equation is satisfied at the lowest ordérdym.

5. Operator ordering

Each recipe to path integrate implies an operator ordering for the Hamiltonian in the wave
equation. Our interest in this section is to find the operator ordering associated with the
infinitesimal propagator (26). Let us derive equation (26) with respegtdbe = O:

= / d—p_exp|:i:pAU:|
0 21h h

i7 2 " 2 /
X {% (‘8 g];jlaé,p) + 2 ?;,qal;p)> + %(H(q”, p)+H(, p))} (38)
where the short-time approximation (19) has been used.

Equation (38) is linear irH. If H can be expanded in a power series, then it will be
sufficient to handle the ordering for a Hamiltonian

H = qg"p*. (39)

— 0
ih—K(q"t +¢€|q't)
de

T Although the phase in equation (37) has the merit of being a complete solution of the Hamilton—Jacobi equation at
ordere—it is the Hamilton principal function at that order—the integratiorgoin the composition of infinitesimal
propagators (equation (24)) will be not sensitive to a replacementyf V ((¢” +4¢')/2), or (V(q") + V(¢"))/2, etc.

as a consequence of the result (36).
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If g is a normal coordinate, then

LR

Ihkm "m— m— k nm m
X{Tpk L—gm L4 gmty+ 2 5@ +q )}- (40)

Taking into account equation (22),

dg¢'d i
W(q", 0) =/ Znﬁp EXD[ﬁpAq}
{Ihkm pk
X

T a /) /
ih—K(q"t +¢€|q't)
de

2 pk l( q//m l+qrm 1)+ 5 (q”’"+q’"’)}‘l’(q/,0)

1Ihkm

//WL

dq dp
i 8q” 27h

Ihkm < ”> dq dP g 1exp[ pAq] w(g',0)
i dg
) dq dp

g | - e Ag|¥(q',0
(Iaq” 5T Xp[ p q] q'. 0

R a \ [dgdp
(= q" Ag |V
+2(i 8q,,>/ ox ¢ exp[ P q] G0

ihkm R A— Ak Am Am oA ”
=— Lm0+ S (p"q +q" PV (q”, 0). (41)

eXp[ pAq] W(q',0)

This means that the Hamiltonian operator is

ihkm e 1 i 1]

[p (42)

H = }(Almm + 47 5Ky 4
=5 *qp )
The operatofd is Hermitian thanks to the mid time prescription in section 3, which gave
an equal weight to the terms dependinggoandg” in equation (38).

6. Conclusions

We have proposed a scheme to path integrate in phase space, which is applicable to Hamiltonian
systems whose configuration space is a manifold where normal coordinates (i.e., coordinates
behaving like the components of a vector in the tangent space at the origin) can be introduced.
The skeletonization is based on the invariant Jacobi principal functions —those related with
the variational principles of mechanics for mixed boundaries left fixed—and the measure gives
to the propagator the character of a density of We%;ht each argument. The so obtained
infinitesimal propagators (26) and (27) naturally satisfy the &tihger equation, once the
Hamiltonian operator is build in agreement with the operator ordering (42) induced by the path
integral recipe.

The infinitesimal propagators (26) and (27) can be read in terms of the modes

. 1 92J(q,p,H\1"* i
]:p(qj,t): I:det<277:hW)i| eXp|: J(q D, [)] (43)

which are well behaved on all phase space at short times (the nddtfidq’/ dp, is not
singular because the relation between initial and final momenta is bi-univoque at short times).
At + = 0 these modes are eigenfunctions of the momgnta= —ihd/d0* based at the
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origin O, because of the boundary conditiditg, p, = 0) = p,0®. Therefore,F,(g’, 1)

is a short-time approximation quf|l7(t)|pa), and{F,} is a basis of short-time solutions
of the Schédinger equation whatever the Hamiltonian system is. A change of the @igin
implies a change of the badi%,}; of course, all baseF,} are equally good for expanding
the propagator.

For free systems it ig(q, p,t) = p,o® — H(p,)t, and the modes (43) are certainly
exact solutions of the Sobdinger equation. They span the basis of eigenstates of the
(conserved) moment@,. In this case the propagator (26) is exact (i.e., it is the finite
propagator). In particular, the Newton—-Wigner propagator (5) for the relativistic particle—
H(p) = (p? +m?)Y2—can be obtained by integrating on the momenta in equation (26) [9].

In the case of the classical system of section 4, the m@esatisfy the equation (use
equation (15))

9 R B2 (927 \Y2 92 [ 020 \Y?
('hat " om g2 V“”) 7= om (aqap> 94° [<aqap> }T’”' )
This equation is typical for any phagebeing a solution of the Hamilton—Jacobi equation, and
is commonly used to highlight the semiclassical charaéter(0) of wavefunctions having
the form (43). However, as was already stated, the Jacobi principal funfatiom, t) confers
an additional property to the modes (43)—which is the one exploited in this paper—and allows
a different reading of equation (44): the modgsare short-time solutions of the Sétinger
equationfor any value of. In fact, the results in section 4 show us that the rhs in equation (44)
is zero for a quadratic potentialff is an exact solution;?r*/(8m%)(V"")2F, + O(t°) for a
cubic potential, and?s2/(8m?) V" F, + O(t3) in a more general case.

The substitution of the functional action by a skeletonized version in the discrete-time
approximation is one of the ways to give a meaning to the functional integration (1). A different
approach to the same problem is the operator symbol method [18], where the path integral
results from the product of theymbolsassociated with the short-time evolution operator.
The product of symbols involves an integration containing the information about the operator
ordering, which amounts to the prescription of the skeletonization in phase space. The different
rules to generate the ordering for the quantum opeatassociated with a functiog(q, p)
in phase space, can be summarized as follows [19]:

R 9 .0 ih 02

g < f<—|£,—'@) eXp<—58qap)g(CI’ p) (45)
whereg in equation (45) is the normal form of the operator (the power series expansion where
the g precede the), and f (u, v) contains the information about the ordering. Some well
known rules of ordering are shown in table 1 [20].

The Weyl ordering is equivalent to a skeletonization where the Hamiltonian is evaluated

in (¢”+q’)/2. The symmetric ordering corresponds to replace the HamiltoniaH ky'], p) +
H(q', p)]/2[21]. Inthis sense, the skeletonization prescribed in this paper seems to be related
with the symmetrization rule (see equation (19)). Effectively, the ordering (42) for the normal
coordinates and their conjugated momenta begins with a symmetrized contribution coming
from the mean Hamiltonian in equation (38). However, our prescription includes a nontrivial
measure (the Jacobians in equation (25)), which is needed in order that the wavefunction retains
its condition of being a density of Weigét This measure is responsible for the second term

T If V(g0 = mw?q?/2, the Jacobi principal function ig(q, p.1) = —p?tan(wt)/(2mw) + qp/ cosot —
mwg?tan(wr)/2. ThusJ (g, p,t) reflects the equivalent roles gf and p in both the initial condition and the
Hamiltonian.
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Table 1.
Name fu, v) g(g. p)=q"p*
Standard exdlhuv] §™m pk
Anti-standard  expf Shuv] pkgm
Symmetric coskhuv] 3(@" p* + prgm)
Wey! 1 7 o ()"~ 44!
Born-Jordan  @uv) tsin[3huv] Ay Ybo 5 gm
in the ordering (42). Thus the functigf(u, v) associated with the ordering (42) is
fu,v) = COS[%EMU] + %Euv Sin[%ﬁuv]. (46)
Naturally f fulfills the requirements
lim f =1 lim f =0 47
7—0 ! nﬁof (47)

that guarantee the classical limit [19].
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